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Abstract

An analytical approach to predict the bending vibration of a very large floating structure of thin and elongated

rectangular plate configuration, floating on water of shallow depth and under the action of a monochromatic head

wave, is presented. The horizontal size of the plate is huge compared with the wavelength of the incident waves, yet the

wavelength is much larger than the draft. The fluid–plate interaction is solved by considering that the draft of the plate

is asymptotically zero and the plate bottom surface is located at the water surface. The boundary condition for the fluid

flow at the plate bottom surface is derived from the hydroelastic behavior of the plate and is different from the

condition at the real water surface. The solution is constructed by matching the wave in the water surface to the wave on

the plate bottom surface, i.e., the transverse vibration of the plate. Solutions valid in three sub-regions of the plate

bottom surface and two sub-regions of the water surface are found separately to be asymptotically matched. The plate

vibration is obtained in an explicit form and its accuracy is confirmed against the results from more computationally

involved approach.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

A design of floating airport proposed in Japan is of a thin mat-like configuration, of horizontal size as large as several

kilometers and a relatively small vertical size of less than 10 m: A floating structure of this configuration will be exposed

to the sea over almost its entire surface, and consequently wave action will be of considerable magnitude; the bending

rigidity will be relatively small and elastic deflection will be crucial for its feasibility. The rigid body motion, on the other

hand, will be small and may be disregarded, because the wavelength of sea waves of practical concern is obviously too

short compared with the huge size of the structure to induce rigid body motions.

Accurate prediction of the interaction of such a thin but huge floating structure with water waves is rather a new

problem. Approaches used for analysis of wave-ship or wave–structure interaction [e.g., Faltinsen (1990)] will be

applicable but may not always be the best for straightforward prediction of the elastic response of such a peculiar

configuration. Several efforts (Newman et al., 1996; Kashiwagi, 1998), however, have been published, concerning

numerical computation of the elastic response by implementing the boundary element method.

An alternative model, accounting for the fact that the body is very thin and the wave length is very short compared

with its horizontal dimension, leads us to more analytical approaches (Evans and Davies, 1968; Meylan and Squire,

1994; Ohkusu and Namba, 1996, 1998; Hermans, 1997; Namba and Ohkusu, 1999). The analytical approach is more

lucid than the numerical one, and yields an explicit mathematical expression for the elastic response with almost no

burden of numerical work, though its application will be limited to a simple body geometry, i.e., a rectangle. A

numerical procedure based on the boundary element method will of course be required when we are concerned with
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actual design of this type of floating structure which is inevitably of complicated configuration, and not an exact

rectangle. Nevertheless, the analytical approach will be a better tool with which to understand vibration in waves of

such a unusual structure. Moreover, the results will be useful as a validation of more computationally involved

boundary element methods.

This paper is concerned with an analytical approach to predict vibration of a very large floating structure (VLFS) of

thin and rectangular plate configuration floating on water of shallow depth. We seek a solution as the draft of the

structure approaches zero. Employment of the linear shallow water theory in addition to a small draft approximation

facilitates simpler formulation of our problem. A similar formulation was proposed by Stoker (1958) for two-

dimensional analysis of a floating elastic body. The shallow water assumption will be rather realistic, because floating

airports are intended to be installed in coastal areas. A similar type of analysis is possible for deep water, though more

computational work would be required (Ohkusu and Namba, 1996, 1998).

We assume the waves are incident head on to the structure (for oblique incidence Namba and Ohkusu (1999) gave a

result for infinitely long plates and Takagi (2001) considered a plate of finite length). If the width of the structure is of

the same order as the incident wave length, the analysis is less complicated with the assumption of slender body

diffraction (Ohkusu and Namba, 1998). The width of an actual airport, however, will be very large compared with the

wavelength of incident waves. In this paper, we study the case in which both the width and the length of the structure

are very large, yet the former is much smaller than the latter.

2. Formulation of the problem

Suppose an elongated rectangular plate is floating at a uniform draft d in equilibrium, as shown in Fig. 1. The length

L and width B are as large as kilometers while the draft d is a few meters. The water depth h is assumed uniform. The

thickness of the plate, which does not appear explicitly in our analysis, will be of the order OðdÞ: Let ðx; y; zÞ be

rectangular coordinates with the x–y plane in the calm water surface and with the z-axis vertically upwards. Let r and g

denote density of the water and gravitational acceleration.

We study transverse vibration of the plate under the action of a monochromatic incident wave of amplitude a;

z0eiot ¼ ae�iðkx�otÞ: ð1Þ

Here o is the wave frequency and k the wavenumber.

We consider the flow and oscillation of the plate to be time-periodic: the velocity potential is of the form Fðx; y; zÞeiot:
Assuming the oscillation is small, F should satisfy the linearized body boundary condition on the plate surface in

equilibrium, the water bottom condition at z ¼ �h and the linearized free surface condition on the mean water surface

z ¼ 0:
Let zðx; yÞeiot denote the plate transverse oscillation which is to be determined from the fluid–plate interaction

analysis. The body boundary condition on the bottom surface of the plate is given by

@F
@z

¼ ioz on z ¼ 0: ð2Þ
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In fact this condition is to be imposed at the correct bottom surface z ¼ �d ; but since we assume d is very small

compared with any other length scale, it may be transferred to z ¼ 0: Another body boundary condition on the side

surface �dozo0 at the four edges of the plate will be required to be satisfied. Its effect, however, is limited to within a

very small distance of the order OðdÞ from the edges, and F determined under only condition (2) will be a good estimate

for the potential throughout most of the fluid region. Obviously, one need not account for the body boundary condition

at the side surface when the transverse oscillation of the plate is concerned (this will not be true when one intends to

predict the hydrodynamic force acting in the horizontal direction).

The dimensions of the plate and the wave length of practical concern will justify the assumptions:

kh515kB; kL: ð3Þ

One of the most probable applications of this type of platform will be a floating airport supposed to be located in a

coastal area, where the assumption of shallow water will be plausible.

We employ the linear shallow water theory [e.g., Stoker (1958)]. Let a function fðx; yÞ be Fðx; y; 0Þ: Then f satisfies a

linear wave equation in the water region, the top of which is not covered by the plate:

@2

@x2
þ

@2

@y2

� �
fþ k2f ¼ 0; ð4Þ

where k ¼ o=
ffiffiffiffiffi
gh

p
: The body boundary condition (2) is rewritten as

ioz ¼
@F
@z z¼0

¼ �h
@2

@x2
þ

@2

@y2

� �
f: ð5Þ

When we interpret zðx; yÞeiot as the wave elevation in the water surface not covered by the plate, Eq. (5) is valid in giving

the wave elevation in terms of f:
The equation of small transverse vibration of the plate is

D
@2

@x2
þ

@2

@y2

� �2

zeiot � mo2zeiot ¼ rgzeiot � riofeiot: ð6Þ

Here D denotes the bending rigidity of the plate per unit length. The second term accounts for the inertia effect of the

plate, where m is the mass of the plate per unit area. The weight must initially balance the buoyancy of the plate and m is

proportional to d: The second term is thus of order Oðkd � khÞ which is small enough to be ignored compared with other

terms, although its inclusion does not cause any analytical difficulty. The third term represents the variation of the

buoyancy due to the local displacement of the plate surface from equilibrium. The fourth term is the dynamical fluid

pressure acting on the plate bottom. The first term may need a little more discussion. Clearly only Dr4 ¼ Oð1Þ (r2

denotes the Laplacian in the x–y plane) produces a consistent and practically meaningful solution to the plate transverse

vibration equation. Since the spacial variation of the plate deflection is of the same order OðkÞ as that of the water wave,

Dr4 ¼ Oð1Þ requires the small bending rigidity D to be of order OððkLÞ�4Þ; when normalized by L: This will be realized

if the plate has large length and small thickness.

Multiplying both sides of Eq. (6) by io and eliminating z by introducing Eq. (5), we have the fluid–plate coupling

condition underneath the plate:

ðDr6 þ rgr2 þ rgk2Þf ¼ 0: ð7Þ

Other conditions f should satisfy are the radiation condition requiring that the wave motion except for the incident

wave should progress outward as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
-N; and the free–free plate condition of zero shear force and zero bending

moment at the plate edges.

In summary our problem is: (i) to determine fðx; yÞ satisfying Eq. (4) in the water region not covered by the plate,

Eq. (7) in the water region underneath the plate, the radiation condition and the free–free plate condition; (ii) to

compute the transverse vibration of the plate z using Eq. (5).

3. Method of solution

We first study a simplified mathematical problem in which Eq. (7) should be satisfied over a region

Ofðx; yÞj 0pxoþN;�Noyp0g of the x–y plane as shown in Fig. 2; the conditions at two plate edges x ¼ L and

y ¼ �B are replaced by the requirement that f be bounded at x ¼ þN and y ¼ �N as long as it is on O: It will be seen

later that the result is readily extended to obtain the transverse vibration of an elongated rectangular plate.
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In the regions O1fðx; yÞj �Noxp0;�Noyp0g and O2fðx; yÞj �NoxoþN; 0pyg not covered by the plate,

condition (4) is to be satisfied.

The lowest order term in an asymptotic expansion of the solution with respect to the reciprocal of large wavenumber

k will be

f ¼

A1e�ikLx þ A2el2x þ A3el3x in O;

e�ikx þ Reikx in O1;

e�ikx in O2:

8><
>: ð8Þ

The first and second lines of Eq. (8) for the regions O and O1 would represent the solution if the plate had no edge on

y ¼ 0: kL is a real positive constant and l2;3 are two conjugate complex numbers with negative real part; Aj ð j ¼ 1; 2; 3Þ
and R are complex constants (see Appendix for the details). To simplify Eq. (8), a in Eq. (1) has been chosen as �io=h:
Obviously solution (8) is discontinuous on y ¼ 0 corresponding to the division of the plane into the region O1 in which

the incident wave and the reflection in front of the plate coexist, the region O2 in which the incident wave is transmitted

past the corner of the plate, and the plate region O: Naturally, Eq. (8) does not satisfy the edge condition of zero

bending moment and zero shear force of the plate.

Solution (8) may be interpreted as an outer solution. We seek an inner solution valid close to the plate edge at y ¼ 0

and to be matched with the outer solution. For the sake of simplicity, we ignore the effect of the corner of the plate at

x ¼ 0; y ¼ 0: This means our analysis is valid for the plate vibration at a location far away (in the scale of wavelength)

from the corner.

It is reasonable to attempt the following form of the inner solution:

f ¼ c0ðx; yÞe
�ikx þ c1ðx; yÞe

�ikLx þ c2ðx; yÞe
l2x þ c3ðx; yÞe

l3x; ð9Þ

assuming the slow variation of cj ð j ¼ 0; 1; 2; 3Þ in the x direction compared with the variation in the y direction.

Hereafter we denote l0 ¼ �ik and l1 ¼ �ikL when it is convenient.

3.1. Solution in the region y ¼ Oðk�1Þ of O

In this region the variation of cj in the y direction will be as large as

@cj

@y
¼ OðkcjÞ: ð10Þ

The conditions of zero shear force and zero bending moment at y ¼ 0; x > 0 are written for f:

@

@y
r4 þ ð1 � nÞ

@2

@x2
r2

	 

f ¼ 0; r4 � ð1 � nÞ

@2

@x2
r2

	 

f ¼ 0; ð11Þ
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Fig. 2. A thin plate covering a quadrant of the water surface.
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where n is Poisson’s ratio of the plate. It will be readily seen from the magnitudes of the derivatives of f in the x

direction that the plate edge conditions would not be satisfied unless the variation of f in the y direction satisfies

condition (10).

Substituting Eq. (9) into Eq. (7) and retaining the lowest order terms, in view of Eq. (10), we have

D
@6cj

@y6
þ 3Dl2

j

@4cj

@y4
þ ðrg þ 3Dl4

j Þ
@2cj

@y2
¼ 0 ð j ¼ 1; 2; 3Þ; ð12Þ

D
@6c0

@y6
� 3Dk2 @

4c0

@y4
þ ðrg þ 3Dk4Þ

@2c0

@y2
� Dk6 ¼ 0: ð13Þ

A solution of Eq. (12) is written as

cj ¼
X4

m¼1

EjmðxÞesjmy þ ajðxÞy þ bjðxÞ ð j ¼ 1; 2; 3Þ; ð14Þ

where Ejm and aj ; bj are independent of y; sjm are the four roots of the equation

Ds4
j þ 3Dl2

j s
2
j þ ðrg þ 3Dl4

j Þ ¼ 0: ð15Þ

The terms of the series in Eq. (14) that grow exponentially as y approaches �N are to be excluded, because it should

match with a solution at y ¼ �N; as shown later; two roots of Eq. (15) are of negative real part (Reðsj3Þo0 and

Reðsj4Þo0) and therefore Ej3 and Ej4 must be zero. sj1 and sj2 for the nonzero terms are given by

sj1; sj2 ¼
1ffiffiffi
2

p �3l2
j 7i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rg=D þ 3l4

j

q� �1
2
; jargðsj1Þj; jargðsj2Þjop=2: ð16Þ

A solution of Eq. (13) will be written in the form

c0 ¼
X6

m¼1

E0mes0my; ð17Þ

where s0m are the six roots of the equation

Dðs2
0 � k2Þ3 þ rgðs2

0 � k2Þ þ rgk2 ¼ 0: ð18Þ

Obviously three of them, s01; s02 and s03; have positive real part and the others have negative real part; E04; E05 and E05

are zero for the same reason that Ej3 and Ej4 are zero. For the first three terms

s01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

L

q
; s02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

p
; s03 ¼ s�02 ð19Þ

(see Appendix for the definition of the complex number l), where the asterisk stands for the complex conjugate.

Conditions (11) at the plate edge ðy ¼ 0Þ ensuring free shear force and free bending moment are written for each

cj ð j ¼ 0; 1; 2; 3Þ as

l2
j þ

@2

@y2

� �2

þl2
j ð1 � nÞ l2

j þ
@2

@y2

� �" #
@cj

@y
¼ 0; ð20Þ

l2
j þ

@2

@y2

� �2

�l2
j ð1 � nÞ l2

j þ
@2

@y2

� �" #
cj ¼ 0: ð21Þ

It is clear now from these equations that assumption (10) is legitimate.

Letting

Pjm ¼ ½ðs2
jm þ l2

j Þ
2 þ ð1 � nÞl2

j ðs
2
jm þ l2

j Þ�sjm; ð22Þ

Qjm ¼ ½ðs2
jm þ l2

j Þ
2 � ð1 � nÞl2

j ðs
2
jm þ l2

j Þ�; ð23Þ

we rewrite the plate edge conditions (20) and (21) to obtain:

P01E01ðxÞ þ P02E02ðxÞ þ P03E03ðxÞ ¼ 0; ð24Þ

Q01E01ðxÞ þ Q02E02ðxÞ þ Q03E03ðxÞ ¼ 0; ð25Þ
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Pj1Ej1ðxÞ þ Pj2Ej2ðxÞ þ l4
j ð2 � nÞajðxÞ ¼ 0; ð26Þ

Qj1Ej1ðxÞ þ Qj2Ej2ðxÞ þ l4
j nbjðxÞ ¼ 0; ð27Þ

where Eqs. (26) and (27) are for j ¼ 1; 2 and 3:
Eqs. (24)–(27) are not sufficient to determine all the unknowns Ejm; aj and bj ; other conditions will be provided by

matching with the solutions in the other regions.

3.2. Solution in the region y ¼ Oðk�1=2Þ in O

It is obvious that the inner solution (14) when letting y approach �N; does not match with the corresponding term in

the first line of the outer solution (8) in O: We need a solution bridging both solutions; it should be constructed in the

region y ¼ Oðk�1=2Þ in O: On the other hand c0 given by Eq. (17) becomes zero as y goes to �N; it is consistent with the

outer solution (8) which has no e�ikx component in O:
In the region yB� Oðk�1=2Þ the variation of cj ð j ¼ 1; 2; 3Þ will be a little larger in the y direction than in the x

direction:

@cj

@y
¼ Oðk1=2cjÞ;

@cj

@x
¼ OðcjÞ: ð28Þ

The lowest order terms of Eq. (7), when Eq. (9) has been substituted and Eq. (28) assumed, yields

ðrg þ 3Dl4
j Þ

@2cj

@y2
þ 2lj

@cj

@x

 !
¼ 0: ð29Þ

In view of the anticipated matching with the outer solution (8) in the region O; a solution of Eq. (29) can be written in

the form (Mei and Tuck, 1980)

cj ¼ Aj þ
1

iej

ffiffiffiffiffiffiffiffiffi
2plj

p Z x

0

dx
VjðxÞffiffiffiffiffiffiffiffiffiffiffi
x � x

p elj y
2=2ðx�xÞ; ð30Þ

in which unknown functions VjðxÞ are to be determined later by matching with solution (14). Here e1;3 ¼ �1 and e2 ¼ 1:
In deriving this solution we have assumed cj-Aj as x approaches zero.

3.3. Solution in the water region O2

The solution cj ð j ¼ 1; 2; 3Þ in the water region O2 is understood to correspond to the wave generated by the plate

vibration, while the solution c0 represents the diffraction at the plate edge y ¼ 0 of the outer wave given by the third

line of Eq. (8). The cj ð j ¼ 1; 2; 3Þ are easily found. Substituting Eq. (9) into the wave equation (4) and considering the

slower variation of cj in the x direction than in the y direction, we obtain

@2cj

@y2
þ ðk2 þ l2

j Þcj ¼ 0 ð31Þ

for j ¼ 1; 2 and 3. We may choose the following solution of Eq. (31) that is valid in the water region O2 near the plate

edge at y ¼ 0:

cj ¼ TjðxÞ exp ið�1Þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

j

q
y

	 

ð j ¼ 1; 2; 3Þ; ð32Þ

where Tj are to be determined by matching with the solution in the other region. For c0; on the other hand, we should

assume a little smaller variation in the y direction to obtain a nontrivial solution. Then, we have

�2ik
@c0

@x
þ
@2c0

@y2
¼ 0: ð33Þ

After some algebra we obtain the solution of Eq. (33) as

c0 ¼ 1 �
1 � i

2
ffiffiffiffiffiffi
pk

p Z x

0

dx
V0ðxÞffiffiffiffiffiffiffiffiffiffiffi

x � x
p e�iky2=2ðx�xÞ: ð34Þ

We can match Eqs. (32) and (34) with the outer solution (8) in the region O2: cj given by Eq. (32) becomes zero as y

approaches þN since the real part of ið�1Þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

j

q
is negative for j ¼ 2 and 3; and the wave corresponding to j ¼ 1;
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which is generated by the plate vibrating in the progressive mode c1e�ikLx; does not exist where y > x tanð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

L

q
=kÞ

(as long as the plate corner effect is ignored). c0 given by Eq. (34), is associated with the interaction of the plate edge

and the incident waves. It is constructed such that it approaches unity as y goes to infinity, and is matched with the third

line of the outer solution (8).

3.4. Completion of matching

In order to determine all the unknowns appearing in Eqs. (14), (17), (30), (32) and (34), which are valid in their

respective regions, we have to complete the matching process. The matching and other conditions are summarized as

follows:

(a) the inner solution (30) and solution (17) are matched with the first line of the outer solution (8) in the plate

region O;
(b) the inner solution (30) is matched with the inner–inner solutions (14) in the region O;
(c) solutions (14) and (17) in the region O are continuous at y ¼ 0 with solutions (32) and (34) in the region O2;
(d) zero bending moment and zero shear force at the plate edge of y ¼ 0 are satisfied with solutions (14) and (17);

(e) solutions (32) and (34) are matched with the third line of the outer solution (8) in the region O2:

Requirements (a) and (e) are met because solutions (17), (30), (32) and (34) were thus constructed. Condition (d) was

already given by Eqs. (24)–(27). The remaining conditions to be satisfied are (b) and (c).

3.4.1. The case ja0

As y-�N; Eq. (14) approaches

cj ¼ ajðxÞy þ bjðxÞ: ð35Þ

When y-0; then Eq. (30) will be

cj ¼ Aj þ
1

iej

ffiffiffiffiffiffiffiffiffi
2plj

p Z x

0

dx
VjðxÞffiffiffiffiffiffiffiffiffiffiffi
x � x

p � yVjðxÞ: ð36Þ

Eqs. (35) and (36) should match by the requirement of (b). We have

ajðxÞ þ VjðxÞ ¼ 0; ð37Þ

bjðxÞ �
1

iej

ffiffiffiffiffiffiffiffiffi
2plj

p Z x

0

dx
VjðxÞffiffiffiffiffiffiffiffiffiffiffi
x � x

p ¼ Aj : ð38Þ

Condition (c) will require the continuity of Eqs. (14) and (32) and of their normal fluxes at y ¼ 0: This yields

Ej1ðxÞ þ Ej2ðxÞ þ bjðxÞ � TjðxÞ ¼ 0; ð39Þ

sj1Ej1ðxÞ þ sj2Ej2ðxÞ þ ajðxÞ � ð�1Þ j i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

j

q
� TjðxÞ ¼ 0: ð40Þ

Eqs. (26), (27), (37), (38), (39) and (40) lead to relations between the unknowns Ej1ðxÞ; Ej2ðxÞ; ajðxÞ; bjðxÞ; TjðxÞ and

VjðxÞ as follows:

Ej1 ¼ �ðM�1
j Þ15VjðxÞ; Ej2 ¼ �ðM�1

j Þ25VjðxÞ; ð41Þ

aj ¼ �ðM�1
j Þ35VjðxÞ; bj ¼ �ðM�1

j Þ45VjðxÞ; Tj ¼ �ðM�1
j Þ55VjðxÞ; ð42Þ

where M�1
j is the inverse of matrix Mj :

Mj ¼

Pj1 Pj2 l4
j ð2 � nÞ 0 0

Qj1 Qj2 0 l4
j n 0

1 1 0 1 �1

sj1 sj2 1 0 ð�1Þ jþ1i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2

j

q
0 0 1 0 0

0
BBBBBBBB@

1
CCCCCCCCA
: ð43Þ
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Substitution of bj given by Eqs. (42) into Eq. (38) yields an Abel integral equation of the second kind for VjðxÞ:

ZjVjðxÞ �
1

iej

ffiffiffiffiffiffiffiffiffi
2plj

p Z x

0

dx
VjðxÞffiffiffiffiffiffiffiffiffiffiffi
x � x

p ¼ Aj ; ð44Þ

where Zj ¼ �ðM�1
j Þ45: The exact solution of Eq. (44) is given by

VjðxÞ ¼
Aj

Zj

exp �
x

2ljZ
2
j

" #
erfc �

ffiffiffiffiffiffiffiffi
x=2

p
iejlj

 !
; ð45Þ

where erfc is the complementary error function. Once VjðxÞ is known, all other unknowns are readily determined from

Eqs. (41) and (42).

3.4.2. The case j ¼ 0

The continuity of f and the normal flux is required also for Eqs. (17) and (34). In the limit of y-0; Eq. (34) reduces

to

c0 ¼ 1 �
1 � i

2
ffiffiffiffiffiffi
pk

p Z x

0

dx
V0ðxÞffiffiffiffiffiffiffiffiffiffiffi

x � x
p

 !
þ yV0ðxÞ: ð46Þ

Then the conditions of continuity of Eqs. (17) and (34) are written as

E01ðxÞ þ E02ðxÞ þ E03ðxÞ ¼ 1 �
1 � i

2
ffiffiffiffiffiffi
pk

p Z x

0

dx
V0ðxÞffiffiffiffiffiffiffiffiffiffiffi

x � x
p ; ð47Þ

s01E01ðxÞ þ s02E02ðxÞ þ s03E03ðxÞ ¼ V0ðxÞ: ð48Þ

Eqs. (24), (25), (47) and (48) determine the unknowns E01ðxÞ;E02ðxÞ;E03ðxÞ and V0ðxÞ: They are

V0ðxÞ ¼
1

T
e�ix=2kZ2

0 erfc
1 � i

2
ffiffiffi
k

p
Z0

ffiffiffi
x

p !
; ð49Þ

where Z0 ¼ ðM�1
0 Þ13 þ ðM�1

0 Þ23 þ ðM�1
0 Þ33 and M�1

0 is the inverse of matrix M0

M0 ¼

P01 P02 P03

Q01 Q02 Q03

s01 s02 s03

0
B@

1
CA ð50Þ

and

E0m ¼ �ðM�1
0 Þm3V0ðxÞ: ð51Þ

4. Deflection of the plate

An expression for cj ð j ¼ 1; 2; 3Þ valid in the whole plate region O is constructed as a composite expression of

Eqs. (8), (14) and (30). c0 is given by a composite of Eqs. (8) and (17). f of Eq. (9), computed by the resulting composite

expressions for cj ð j ¼ 0; 1; 2; 3Þ; is substituted into Eq. (5) to yield the plate deflection zðx; yÞeiot:

zðx; yÞ ¼ þ
ih

o
e�ikx

X3

m¼1

ðs2
0m � k2ÞE0mðxÞes0my þ

ih

o
e�ikLx

X2

m¼1

ðs2
1m � k2

LÞE1mðxÞ es1my

"

�k2
L A1 �

1 � i

2
ffiffiffiffiffiffiffiffi
pkL

p Z x

0

dx
V1ðxÞffiffiffiffiffiffiffiffiffiffiffi

x � x
p e�ikLy2=2ðx�xÞ

 !#

þ
ih

o

X3

j¼2

elj x
X2

m¼1

ðs2
jm þ l2

j ÞEjmðxÞes2my þ l2
j Aj þ

1

2
ffiffiffiffiffiffiffi
plj

p Z x

0

dx
VjðxÞffiffiffiffiffiffiffiffiffiffiffi
x � x

p elj y
2=2ðx�xÞ

 !" #
: ð52Þ

As l2;3 has a negative real part, the third line of Eq. (52) attenuates quickly away from the front edge of the plate; the

plate deflection computed from the first and second lines prevails in most parts of O:
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Eq. (52) gives the deflection of the plate in the semi-infinite region O: Vibration of an elongated plate of width B;
however, is readily computed with zðx; yÞ given by Eq. (52). If O has another edge at y ¼ �B; its deflection may be

computed from

zðx; yÞ þ zðx;�y � BÞ ð53Þ

as the deflection is symmetrical about the center line y ¼ �B=2 of the plate.

The wave elevation in the water region O2 is computed in a similar manner. The wave function f is derived from

Eqs. (32) and (34). Then the wave elevation is given by

zðx; yÞ ¼ �
ih

o
k2T1ðxÞe

�iðkLxþ
ffiffiffiffiffiffiffiffiffiffi
k2�k2

L

p
yÞ �

ih

o
k2e�ikx 1 �

1 � i

2
ffiffiffiffiffiffi
pk

p Z x

0

dx
V0ðxÞffiffiffiffiffiffiffiffiffiffiffi

x � x
p e�iky2=2ðx�xÞ

" #

�
ih

o
k2
X3

j¼2

TjðxÞe
iðljxþð�1Þ j

ffiffiffiffiffiffiffiffiffiffi
k2þl2

j

p
yÞ: ð54Þ

The first line will be dominant except near the front edge of the plate.

One can compute the plate deflection and the wave elevation around the plate from Eqs. (52) and (54) without

much numerical work. Numerical work is only required to evaluate the integrals containing VjðxÞ (derived by Eqs. (45)

and (49)).

5. Results and discussion

In our analysis the principal scale of the plate dimension is the width B; the length L does not appear. Results shown

here are, however, normalized and illustrated with a virtual length L ¼ 5B: This is for convenience in comparing with

other results. They are computed for a plate of normalized bending rigidity D=rgL4 ¼ 3:2  10�8 and Poisson’s ratio

n ¼ 0:3; which are taken from those values often used (Kashiwagi, 1998) for study of a prototype floating airport.

Fig. 3 is the pattern of the deflection of a thin plate, for a water depth to plate length ratio h=L ¼ 0:01 and a

normalized frequency of the incident waves KL � o2=gL ¼ 100p; which corresponds to kh ¼ 1:77: The deflection is

normalized by the amplitude of the incident waves. It is seen in this figure that the edge effect is a ‘parabolic’ feature, as

expected from Eq. (29) or (30). The front edge effect is localized in the vicinity of the front edge. Since our formulation

assumes that no rear edge of the plate exists, no reflection from the rear edge is seen in the plate deflection.

At a lower frequency of KL ¼ 40p and at the same water depth ðkh ¼ 1:1Þ a snapshot of the plate deflection

computed by the present approach (left) is compared in Fig. 4 with a result by a more complicated numerical approach

(right) based on the boundary element method (BE) (Kashiwagi, 1998). The deflection predicted by the present

approach appears to be in good agreement with the one by the BE result, though the former predicts a slightly too

strong side-edge effect. The present approach ignored the corner effect of the plate, while the BE method accounted for

it correctly. Agreement of both results reveals that the corner effect might not be significant.

It must be noted that the number of unknowns to be solved of the BE approach based on the crude zeroth order

panel method would be Oð104Þ to obtain this result. In Kashiwagi (1998), however, a bicubic B spline function is utilized

to represent the hydrodynamic pressure on the plate, and the number of unknowns is reduced drastically; yet one has to

solve for several hundreds of unknowns, including the mode functions of the deflection up to the several hundredth. The

present approach, on the other hand, does not need much numerical computation except in evaluating a single integral

of nonsingular behavior.

Fig. 5 is a similar comparison at shallower water depth ðkh ¼ 0:5Þ: One sees no specific difference from the type of

behavior observed in Fig. 4.

It will be seen in all the figures that a component of the wave number kL is dominant in the plate deflection except at

the edge region near y ¼ 0 or y ¼ �B: Numerically the k component is about 10% of the kL component at kLx ¼ 2p
and 8 percent at kLx ¼ 10p near the edge, for the cases of Figs. 3 and 4. Other components are all less than 1%. For the

shallower water depth shown in Fig. 5 the k component is about 1% of the kL component, even near the edge.

In order to see more clearly the difference between the deflection predicted by the BE method and the present

method, the amplitude of the plate deflection at the center-line y ¼ �B=2 (left) and at the side edge y ¼ 0 (right) are

compared in Figs. 6 and 7. Fig. 6 corresponds to Fig. 4 and Fig. 7 to Fig. 5. A small fluctuation seen in the result from

the BE method is the effect of the deflection wave reflected at the rear end of the plate; the wave progressing in the

positive x direction (the main part of the deflection) interacts with the reflected wave of smaller amplitude going in the

negative x direction, to produce small standing-wave-like deflection superposed on the main part. Since the present

method, assuming the plate to be half-infinitely long in the x direction, does not account for the rear end effect, this
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small fluctuation is naturally not predicted. The reason for the large amplitude predicted by the BE method at the

rear end is also explained by the same end effect. Presumably if this effect were correctly taken into account in the

present approach, the agreement could be perfect. Except for this disagreement, the present method is able to predict

the plate deflection at good accuracy, at the center line in particular. At the side-edge the present method is slightly less

accurate.
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Fig. 3. Amplitude (upper), imaginary part (middle), and real part (lower) of deflection of VLFS in head seas, KL ¼ 100p; h=L ¼ 0:01:
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It is reported in Kashiwagi (1998) that the plate deflection predicted by his BE method agrees well with experimental

data. This means that the present method will be also accurate if its results are compared with experimental

measurements.
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Fig. 4. Definition of VLFS in head seas, KL ¼ 40p=L; h=L ¼ 0:01; left: present method, right: panel method (Kashiwagi, 1998).

Fig. 5. Definition of VLFS in head seas, KL ¼ 40p=L; h=L ¼ 0:002; upper: present method, lower: panel method (Kashiwagi, 1998).

Fig. 6. Deflection of VLFS in head seas, KL ¼ 40p=L; h=L ¼ 0:01:
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6. Concluding remarks

A new approach is proposed to analyze the bending vibration of a large floating structure whose form is just like a

thin plate. The horizontal size of this plate is huge compared with the wavelength, while the draft is much smaller than

the wavelength. The fluid–plate interaction is solved mathematically by considering that the plate bottom surface is

located at the water surface. The dynamic deflection of the thin plate is understood as a wave propagating on the plate.

In the present approach the main concern is to solve for the wave refraction and reflection at the boundary between the

plate bottom surface and the real water surface. We seek the solution by matching the wave in the plate to the wave on

the water surface, with the plate edge solution satisfying the conditions of zero bending moment and zero shear force.

The plate vibration is obtained in an explicit analytical form, which can be evaluated readily with almost no

computational effort. This simple formula will be useful for better understanding of the hydroelasticity in waves of large

floating structures of thin plate configuration.

The accuracy of the plate vibration predicted by the present method is confirmed against the results from a rigorous

but more computationally involved approach. Of course real structures will be of complicated configuration, and the

prediction of their vibration requires a computational approach based on large scale use of computers. Yet the present

method will be a bench mark for validating the results of large scale numerical computations.

Appendix A

If the plate shown in Fig. 2 has no edge at y ¼ 0; i.e., the plate extends from y ¼ �N to þN; the plate vibration must

be uniform with y and Eq. (7) will be simplified to

D
d6f
dx6

þ rg
d2f
dx2

þ rgk2f ¼ 0: ðA:1Þ

Assume

D ¼ Oðk�4Þ;
d

dx
¼ OðkÞ; ðA:2Þ

then every term of Eq. (A.1) is of the same order Oðk2Þ and the same problem as in Stoker (1958) is recovered. If the

plate is stiffer ðDbOðk�4ÞÞ; then no transverse vibration mode occurs. A more flexible plate will yield a solution that is

essentially not different from the one derived from the first of assumptions (A.2).

A solution of Eq. (A.1) is given by

f ¼
X6

j¼1

Aje
ljx; ðA:3Þ

where lj are the six roots of

Dl6
j þ rgl2

j þ rgk2 ¼ 0: ðA:4Þ
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Fig. 7. Deflection of VLFS in head seas, KL ¼ 40p=L; h=L ¼ 0:002:
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These are

l1;4 ¼ 8ikL; l2;5 ¼ 8l; l3;6 ¼ 8l�; �p=2oargðlÞop=2;

where

kL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ju þ vj

p
; l2 ¼ �

1

2
ðu þ vÞ þ i

ffiffiffi
3

p
2

ðu � vÞ

" #
;

u; v ¼ �
b
2
7

b2

4
þ

a3

27

� �1
2

2
4

3
5

1
3

; a ¼
rg

D
; b ¼

rgk

D

and the asterisk stands for the complex conjugate. It is straightforward to show lj ¼ OðkÞ and therefore to confirm the

legitimacy of the second assumption of Eq. (A.2).

Aj in Eq. (A.3) will be determined as follows: A5;6 ¼ 0 results from the condition that f is finite at x ¼ þN and

A4 ¼ 0 because no waves come from x ¼ þN; the other three A1;2;3 are determined by requirement of zero bending

moment and zero shear force at x ¼ 0:

ð�ikLÞ
5A1 þ l5

2A2 þ l5
3A3 ¼ 0; ðA:5Þ

ð�ikLÞ
4A1 þ l4

2A2 þ l4
3A3 ¼ 0 ðA:6Þ

and the condition of continuity of mass and energy flux at x ¼ 0 with the wave solution for xo0:

A1 þ A2 þ A3 ¼ 1 þ R; ðA:7Þ

ð�ikLÞA1 þ l2A2 þ l3A3 ¼ �ik þ ikR; ðA:8Þ

where the wave function f at xo0 is represented by

f ¼ e�ikx þ Reikx: ðA:9Þ

The linear Eqs. (A.5)–(A.8) determine all the unknowns A1; A2; A3 and R:
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